第二十冊 廢水處理實務規劃與評析 (實作測驗說明)

目錄

壹	`	測驗方式及內容	1
貳	`	實作測驗考卷 (例)	2
参	•	實作測驗答案卷 (例)	12

第二十冊 廢水處理實務規劃與評析 (實作測驗說明)

壹、測驗方式及內容

測驗時間、範圍、方式、評分方式、及格判定等,如表 1.1 所示。

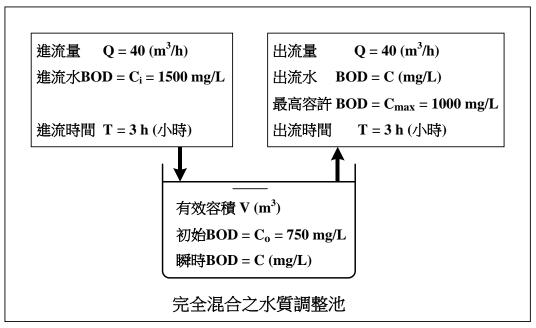
表 1.1 「廢水處理實務規劃與評析」測驗時間、內容、方式、評分方式

測驗時間	90 分鐘							
測驗範圍	廢水處理實務規劃與評析測驗範圍如下:							
	1. 廢水收集處理系統規劃							
	2. 廢水特性概論							
	3. 有機性廢水處理							
	4. 無機性廢水處理							
	毒性污染物質處理							
測驗方式	引導式計算填充題。							
評分方式	满分 100 分,依考試卷上分數計算。							
及格判定	60 分或 60 分以上者及格。							

作答須知

測驗內容採引導式作答,試卷填空處均應作答,閱卷委員將依作答填空處所 填具計算過程及答案進行評分,作答務必清晰完整,作答填空處塗改不予計 分,試卷空白處不得做為草稿計算。

貳、實作測驗考卷 (例)


第一題:試規劃曝氣沉砂池 (40%,每小格答對得5分)

欲處理廢污水之平均流量為 $0.5~\text{m}^3/\text{s}~(43,200~\text{m}^3/\text{d})$,尖峰流量為平均流量之2.75倍 (2.75為水量尖峰係數),尖峰流量時之水力停留時間為3~mins,則:

尖峰流量	=		m ³ /s
池數	=	2	
每一曝氣沉砂池有效容積	=	尖峰流量×停留時間÷池數=	m^3
每池寬度	=	3	m
深/寬	=	1.5/1	
每池深度	=		m
每池長度	=		m
單位長度曝氣量	=	0.45	m ³ /min.m
每池曝氣量	=		m ³ /min

第二題:調勻池有效容積估算 (以水質為基準)(20%,各10%)

一工廠廢水平均流量960 m^3/d (時平均流量40 m^3/h),其日平均BOD=750 $\mathrm{mg/L}$ 。該廠每日上午9-12時之時平均BOD為日平均BOD之2倍 (即1,500 $\mathrm{mg/L}$)。試估算一調勻池之有效容積,使該調勻池出流水之BOD不大於1,000 $\mathrm{mg/L}$ 。

調勻池最小有效容積V _{min} = Q×T÷ln[(C _i -C _o)/(C _i -C _{max})] =	m^3
設定調勻池有效容積 V_{EFF} > V_{min} × 安全因子1.2 =	m ³

第三題:試估算活性污泥曝氣池有效容積及沉澱池有效表面積 (30%, 每小格答對得5分)

一工廠廢水平均流量960 m^3/d ,其平均BOD=750 $\mathrm{mg/L}$,試估算活性污泥曝氣池有效容積及沉澱池有效表面積。估算如下:

進流水BOD總量	=		kg/day
活性污泥濃度MLSS	=	2,000	mg/L
食微比	=	0.3	kg BOD/kg MLSS.day
活性污泥曝氣池有效容積	=		m^3
活性污泥沉澱池表面負荷	=	25	m ³ /m ² .day
活性污泥沉澱池有效表面積	=		m^2

第四題:活性污泥系統規劃 (30%,每小格答對得5分)

一廢水廠平均進流水量為2,500 m³/day,進流入曝氣槽廢水平均BOD 為330 mg/L,處理水平均BOD 為25 mg/L,去除每公斤BOD產生0.45 kg 污泥,活性污泥曝氣槽有效容積為650 m³,曝氣槽污泥濃度MLSS=2,600 mg/L,MLVSS/MLSS=0.75,SV $_{30}$ =260 mL/L,則

F/M	$=(Q\times BOD)/(V\times MLVSS)=$	kg BOD/(kg MLVSS.day)
F/V	$=(Q\times BOD)/V=$	kg BOD/(m³.day)
廢棄污	=Q×(進流水BOD-處理水	kg乾污泥/day
泥量	BOD)×污泥產率=	
污泥龄	=(V×MLVSS)/廢棄污泥量=	days
SVI	= SV ₃₀ (mL/L)/MLSS (g/L) $=$	mL/g
X _R	$= 10^6/\text{SVI} =$	mg MLSS/L

第五題:污水廠水力設計計算 (20%,每小格答對得5分)

流量 $500~m^3/h$ 污水,在管直徑250~mm,管長50~m之封閉圓管線內以滿流方式流動,用Darcy-Weisbach 式 $h_f=0.02\times(L/D)\times(V^2/2~g)$ 估算磨損水頭,則

封閉圓管之截面積	=	m ²
水在封閉圓管之流速		m/sec
g地球重力常數	=	m/s ²
磨損水頭	$= 0.02 \times (L/D)$ $\times (V^2/2 g) =$	m

第六題:工廠室外之地面降雨逕流排水設計 (20%)

高雄某廠區土地長為 $100\,m$,寬為 $50\,m$,若採用 $5\,$ 年一次降雨強度,延時60分鐘設計地面降雨逕流排水系統,經查閱相關雨量站統計迴歸值可得降雨強度 $I=100\,mm/h$,採用合理化計算公式: $Q=0.001\times C\times I\times A$ 進行計算,假設逕流係數採0.85,則:

集水面積	=		m^2				
洪峰流量Q	$= 0.001 \times C \times I \times A =$		m ³ /sec				
排水系統管徑為=250 n	排水系統管徑為=250 mm時						
管之截面積	=		m ²				
當洪峰流量時降雨逕流排水系統管內流速	=		m/sec				

第七題:廢水廠查核膠凝效果 (20%,每小格答對得5分)

某散氣式膠凝池,使用曝氣攪拌,液體得到之淨動力 (net power) 為1,500 W,膠凝 池液體總量為300 m^3 ,廢水處理量為35,000 CMD,水溫為 10° C (水之黏滯係數 $\mu_{10^{\circ}}$ C = 0.00131 kg/ms),試估算:

速度梯度(G)	$= \sqrt{\frac{P}{\mu V}} \ =$	s^{-1}
停留時間(t)	= V/Q =	S
G×t	=	
膠凝效果是否正常	:	

第八題:粒子沉澱去除率估算 (35%,答對1格得3分)

一廢水中懸浮固體之沉降速度分布如附表第1、2列所示,試估算其經一表面負荷Q/A = $30~m^3/m^2$.day之初沉池之平均粒子沉澱去除率。

懸浮固體之沉降速度分布及去除計算

1. 沉降速度V _S (m/day)		15	20		≥30		
2. 重量%	20	30	20	15	15		100
1. 去除分率=V _S /V ₀							
2. (重量%)×(去除分率)						合計	

第九題:下水道使用費計算 (30%,每小格答對得5分)

已知一工業區食品工廠以用水0.2元/m³基準計算,放流水超過放流標準BOD=250 mg/L、SS=300 mg/L,需付廢水處理費\$ 0.75元/kg BOD、\$ 2元/kg SS,今該食品工廠每天用水3,000 m³,排放BOD=500 mg/L、SS=1,000 mg/L,試計算:

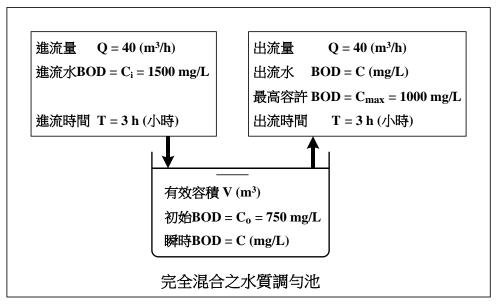
每日需付費之超過 BOD 放流標準之 BOD	_	kg
每日需付費之超過 SS 放流標準之 SS	=	kg
每日需支付自來水用水費	=	元
每日需支付 BOD 費用	=	元
每日需支付 SS 費用	=	元
合計	=	元

第十題:規劃離子交換樹脂需要量 (25%,每小格答對得5分)

有一電鍍廠,其廢水量為1,000 CMD (m^3/day) ,水溫20°C,其水質為: $[Fe^{+3}]=10$ mg/L、 $[Cu^{+2}]=20$ mg/L、 $[Zn^{+2}]=40$ mg/L、 $[Ni^{+2}]=60$ mg/L,其中原子量分別為Fe=55.8、Cu = 63.5、Zn=65.4、Ni=58.7 g/mole。現擬以離子交換去除這些水中金屬離子,若陽離子交換樹脂之交換容量為0.5 eq/L,則:

[Fe ⁺³] 當量濃度 =	:		eq/L
[Cu ⁺²] 當量濃度 =	:		eq/L
[Zn ⁺²] 當量濃度 =	:		eq/L
[Ni ⁺²] 當量濃度 =	:		eq/L
水中重金屬陽離子總當量濃度 =	0.0	00444	eq/L
離子交換樹脂需要量 =	:		L/day

参、實作測驗答案卷 (例)


第一題:試規劃曝氣沉砂池 (40%,每小格答對得5分)

欲處理廢污水之平均流量為 $0.5 \text{ m}^3/\text{s}$ ($43,200 \text{ m}^3/\text{d}$),尖峰流量為平均流量之2.75倍 (2.75為水量尖峰係數),尖峰流量時之水力停留時間為3 mins,則:

尖峰流量	=	$0.5 \text{ m}^3/\text{s} \times 2.75 = 1.38$	m ³ /s	
池數	=	2	2	
每一曝氣沉砂池有效容積	=	$1.38 \text{ m}^3/\text{s} \times 3 \text{ min} \times 60 \text{ s/min} \div 2 =$	124	m^3
每池寬度	=	3		m
深/寬	=	1.5/1		
每池深度	=	3.00 m×1.5=4.50		m
每池長度	=	$124 \text{ m}^3 \div (3.00 \times 4.50) \text{ m}^2 = 9.2$		m
單位長度曝氣量	_	0.45		m ³ /min.m
每池曝氣量	=	$0.45 \text{ m}^3/\text{min.m} \times 9.2 \text{ m} = 4.14$		m ³ /min

第二題:調勻池有效容積估算 (以水質為基準) (20%)

一工廠廢水平均流量960 m^3/d (時平均流量40 m^3/h),其日平均BOD=750 $\mathrm{mg/L}$ 。該廠每日上午9-12時之時平均BOD為日平均BOD之2倍 (即1,500 $\mathrm{mg/L}$)。試估算一調勻池之有效容積,使該調勻池出流水之BOD不大於1,000 $\mathrm{mg/L}$ 。

調勻池最小有效容積V _{min} =Q×T÷ln[(C _i -C _o)/(C _i -C _{max})] =	$40 \text{ m}^{3}/\text{h} \times 3 \text{ h} \div \ln[(1,500-750)/$ $(1,500-1,000)] = 120 \text{ m}^{3} \div$ $0.405 = 296$	m^3
設定調勻池有效容積 V_{EFF} > V_{min} × 安全因子 1.2 =	355	m ³

第三題:試估算活性污泥曝氣池有效容積及沉澱池有效表面積 (30%, 每小格答對得5分)

一工廠廢水平均流量960 m^3/d ,其平均BOD=750~mg/L,試估算活性污泥曝氣池有效容積及沉澱池有效表面積。估算如下:

進流水BOD總量	=	$960 \text{ m}^3/\text{d} \times 0.750 \text{ kg/m}^3 = 720$	kg/day
活性污泥濃度MLSS	=	2,000	mg/L
食微比	=	0.30	kg BOD/kg MLSS.day
活性污泥曝氣池有效容積	=	720/(2×0.30)=1,200	m ³
活性污泥沉澱池表面負荷	=	25	m ³ /m ² .day
活性污泥沉澱池有效表面積	_	960÷25=38.4	m^2

第四題:活性污泥系統規劃 (30%,每小格答對得5分)

一廢水廠平均進流水量為2,500 $\,\mathrm{m}^3/\mathrm{day}$,進流入曝氣槽廢水平均BOD為330 $\,\mathrm{mg/L}$, 處理水平均BOD為25 $\,\mathrm{mg/L}$,去除每公斤BOD產生 $0.45\,\mathrm{kg}$ 污泥,活性污泥曝氣槽有效容積為650 $\,\mathrm{m}^3$,曝氣槽污泥濃度MLSS=2,600 $\,\mathrm{mg/L}$,MLVSS/MLSS=0.75,SV $_{30}$ =260 $\,\mathrm{mL/L}$,則

$F/M = (Q \times BOD)/(V \times MLVSS) =$	$(2,500 \text{ m}^3/\text{day} \times 0.33 \text{ kg/m}^3)/(650 \text{ m}^3 \times 2.6 \text{ kg/m}^3 \times 0.75) = 0.65$	kg BOD/(kg MLVSS.day)
$F/V = (Q \times BOD)/V =$	$(2,500 \text{ m}^3/\text{day}\times 0.33 \text{ kg/m}^3)/650$ $\text{m}^3 = 1.27$	kg BOD/(m ³ .day)
廢棄污泥量=Q×(進流水BOD-處理水 BOD)×污泥產率=	2,500 m³/day×(0.33-0.025)kg/m³ ×0.45 kg污泥/(kg BOD去除)= 343.1	kg乾污泥/day
平均污泥停留時間=(V×MLVSS)/廢棄 污泥量=	(650 m ³ ×2.6 kg/m ³ ×0.75)/(343.1 kg乾汚泥/day)=3.7	days
SVI = SV_{30} (%)× 10^4 /MLSS(µg/L)=	260 (mL/L)/2.6 (g/L) = 100	mL/g
$X_R = 10^6/\text{SVI} =$	$10^6/100 = 10,000 \text{ mg/L}$	mg MLSS/L

第五題:污水廠水力設計計算 (20%,每小格答對得5分)

流量 $500~m^3/h$ 污水,在管直徑250~mm,管長50~m之封閉圓管線內以滿流方式流動,用Darcy-Weisbach 式 $h_f=0.02\times(L/D)\times(V^2/2~g)$ 估算磨損水頭,則

封閉圓管之截面積	=	$0.25 \times \pi \times 0.25 \text{ m} \times 0.25 \text{ m} = 0.05$	m ²
水在封閉圓管之流速	=	$500 \text{ m}^3/\text{h} \div 3,600 \text{ sec/h} \div 0.05 \text{ m}^2 = 2.78$	m/sec
g地球重力常數		9.8	m/s ²
磨損水頭	$= 0.02 \times (L/D)$ $\times (V^2/2 g) =$	=0.02×50 m÷0.25 m×[(2.78 m/sec) ² /(2×9.8 m/sec ²)]=1.577	m

第六題:工廠室外之地面降雨逕流排水設計 (20%)

高雄某廠區土地長為 $100\,m$,寬為 $50\,m$,若採用5年一次降雨強度,延時60分鐘設計地面降雨逕流排水系統,經查閱相關雨量站統計迴歸值可得降雨強度 $I=100\,mm/h$,採用合理化計算公式: $Q=0.001\times C\times I\times A$ 進行計算,假設逕流係數採0.85,則:

集水面積	=	100 m×50 m=5,000	m ²
洪峰流量Q	$= 0.001 \times C \times I \times A =$	$0.001\times0.85\times100 \text{ mm/h}\times5,000 \text{ m}^2=425$ $\text{m}^3/\text{h}=425 \text{ m}^3/\text{h}\div3,600 \text{ sec/h}=0.118$	m ³ /sec
排水系統管徑為=2501	nm時		
管之截面積	=	$0.25 \times \pi \times 0.25 \text{ m} \times 0.25 \text{ m} = 0.05$	m ²
當洪峰流量時降雨逕流排水系統管內流速	=	$0.118 \text{ m}^3/\text{sec} \div 0.05 \text{ m}^2 = 2.361$	m/sec

第七題:廢水廠查核膠凝效果 (20%,每小格答對得5分)

某散氣式膠凝池,使用曝氣攪拌,液體得到之淨動力 (net power) 為1,500 W,膠凝 池液體總量為300 m³,廢水處理量為35,000 CMD,水溫為 10° C (水之黏滯係數 $\mu_{10^{\circ}}$ = 0.00131 kg/ms),試估算:

速度梯度 (G)	$=\sqrt{rac{P}{\mu V}}~=$	$\sqrt{\frac{1,500}{0.00131\times300}} = 61.8$	s^{-1}
停留時間 (t)	= V/Q =	$300 \text{ m}^3 \div 35,000 \text{ m}^3/\text{d} \times 86,400 \text{ s/d} = 740.6$	S
G×t	=	61.8×740.6=45,769	
膠凝效果是否正常	:	Gt 設計建議為 (2-20)×10 ⁴ ,所以膠凝效果正常	

第八題:粒子沉澱去除率估算 (35%,答對1格得3分)

一廢水中懸浮固體之沉降速度分布如附表第1、2列所示,試估算其經一表面負荷Q/A = $30~m^3/m^2$.day之初沉池之平均粒子沉澱去除率。

懸浮固體之沉降速度分布及去除計算

1. 沉降速度V _S (m/day)	10	15	20	25	≥30		
2. 重量%	20	30	20	15	15	合計	100
1. 去除分率=V _S /V ₀	0.33	0.5	0.67	0.83	1.00		
2. (重量%)×(去除分率)	6.67	15	13.33	12.5	15	合計	62.5

第九題:下水道使用費計算 (30%,每小格答對得5分)

已知一工業區食品工廠以用水0.2元/m³基準計算,放流水超過放流標準BOD=250 mg/L、SS=300 mg/L,需付廢水處理費\$ 0.75元/kg BOD、\$ 2元/kg SS,今該食品工廠每天用水3,000 m³,排放BOD=500 mg/L、SS=1,000 mg/L,試計算:

每日需付費之超過 BOD 放流標準之 BOD		$(500-250) \text{ mg/L} \times 3,000 \text{ m}^3 \times 1,000 \text{ L/m}^3 \times 10^{-6} \text{ kg/mg}$ $= 750$	kg
每日需付費之超過 SS 放流標準之 SS	=	$(1,000-300) \text{ mg/L} \times 3,000 \text{ m}^3 \times 1,000 \text{ L/m}^3 \times 10^{-6}$ kg/mg=2,100	kg
每日需支付自來水用水費	=	$3,000 \text{ m}^3 \times 0.2 \pi/\text{m}^3 = 600$	元
每日需支付 BOD 費用	=	750 kg×0.75 元/kg=563	元
每日需支付 SS 費用	=	2,100 kg×2 元/kg=4,200	元
合計	=	600+563+4,200=5,363	元

第十題:規劃離子交換樹脂需要量 (25%,每小格答對得5分)

有一電鍍廠,其廢水量為1,000 CMD (m^3/day) ,水溫20°C,其水質為: $[Fe^{+3}]=10$ mg/L、 $[Cu^{+2}]=20$ mg/L、 $[Zn^{+2}]=40$ mg/L、 $[Ni^{+2}]=60$ mg/L,其中原子量分別為Fe=55.8、Cu = 63.5、Zn=65.4、Ni=58.7 g/mole。現擬以離子交換去除這些水中金屬離子,若陽離子交換樹脂之交換容量為0.5 eq/L,則:

四十孔水目曲六		10 7 1/55 0 1 / 1/1 000 / 2	<u></u>
[Fe] 富重濃度	=	10 mg/L×1/55.8 mole/g×1/1,000 g/mg×3	eq/L
		eq/mole=0.00054	
[Cu ⁺²] 當量濃度	=	20 mg/L×1/63.5 mole/g×1/1,000 g/mg×2	eq/L
		eq/mole=0.00064	
[Zn ⁺²] 當量濃度	=	40mg/L×1/65.4mole/g×1/1,000g/mg×2eq/mole	eq/L
		=0.00122	
[Ni ⁺²] 當量濃度	=	60 mg/L×1/58.7 mole/g×1/1,000 g/mg×2	eq/L
		eq/mole=0.00204	
水中重金屬陽離子總當量濃度	=	0.00444	eq/L
離子交換樹脂需要量	=	1,000 m ³ /day×1,000 L/m ³ ×0.00444 eq/L÷0.5	L/day
		eq/L=8,880	